Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[dichloridobis(μ_2 -di-4-pyridyl sulfide- $\kappa^2 N, N'$)cobalt(II)]

Jian-Ge Wang, Jian-Hua Qin* and Gui-Ying Zhang

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: jh_q128105@126.com

Received 5 January 2009; accepted 14 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.070; data-to-parameter ratio = 14.8.

In the title compound, $[CoCl_2(C_{10}H_8N_2S)_2]_n$, the Co^{II} atom is located on an inversion centre and is six-coordinated by four N atoms of four symmetry-related di-4-pyridyl sulfide ligands, and two Cl atoms in *trans* positions, in a distorted octahedral geometry. The bridging bidentate di-4-pyridyl sulfide ligands link the Co^{II} centres into a three-dimensional network. The four coordinating pyridine groups are donors and acceptors (N atoms) for intramolecular C-H···N and C-H···Cl hydrogen bonds.

Related literature

For di-4-pyridyl sulfide metal complexes, see: Jung *et al.* (1998, 1999); Kondo *et al.* (2004); Muthu *et al.* (2005).

Experimental

Crystal data $[CoCl_2(C_{10}H_8N_2S)_2]$ $M_r = 506.32$ Monoclinic, $P2_1/c$ a = 7.4940 (11) Å b = 15.355 (2) Å c = 9.4009 (14) Å $\beta = 98.413$ (2)°

 $V = 1070.1 (3) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 296 (2) K $0.44 \times 0.34 \times 0.24 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	5174 measured reflections
diffractometer	1969 independent reflections
Absorption correction: multi-scan	1720 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.017$
$T_{\min} = 0.608, \ T_{\max} = 0.747$	

Refinement

I V S

1

$R[F^2 > 2\sigma(F^2)] = 0.027$	133 parameters
$vR(F^2) = 0.070$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
969 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-N1	2.2185 (18)	Co1-Cl1	2.4221 (5)
Co1-N2 ⁱ	2.2822 (17)		
$N1-Co1-N2^{i}$	94.00 (6)	N1-Co1-Cl1	90.50 (5)
Symmetry code: (i) -	$x + 1, y - \frac{1}{2}, -z + \frac{3}{2}.$		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5 - H5 \cdots N2^{ii}$	0.93	2.62	3.119 (3)	114
C6−H6···Cl1 ⁱⁱⁱ	0.93	2.66	3.292 (2)	126
$C10-H10\cdots Cl1^{iv}$	0.93	2.64	3.292 (2)	128
Symmetry codes:	(ii) $x - 1, -y$	$z + \frac{3}{2}, z - \frac{1}{2};$ ((iii) $-x + 1, y + \frac{1}{2}$	$\frac{1}{2}, -z + \frac{3}{2};$ (iv)

Symmetry codes. (i) x = 1, y + 2, z = 2, (ii) x + 1, y + 2, z = 2, (iv) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}.$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Luo Yang Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2149).

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610– 611.
- Jung, O. S., Park, S. H., Park, C. H. & Park, J. K. (1999). Chem. Lett. 28, 923–927.
- Kondo, M., Shimizu, Y., Miyazawa, M., Irie, Y., Nakamura, A., Naito, T., Maeda, K., Uchida, F., Nakamoto, T. & Inaba, A. (2004). *Chem. Lett.* 33, 514–518.
- Muthu, S., Ni, Z. & Vittal, J. J. (2005). *Inorg. Chim. Acta*, **358**, 595–605. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

supplementary materials

Acta Cryst. (2009). E65, m247 [doi:10.1107/S1600536809001676]

Poly[dichloridobis(μ_2 -di-4-pyridyl sulfide- $\kappa^2 N$,N')cobalt(II)]

J.-G. Wang, J.-H. Qin and G.-Y. Zhang

Comment

As well known, di-4-pyridyl sulfide possesses a magic angle (C-S-C, $\sim 100^{\circ}$) and conformational nonrigidity so it has some flexibility compared with other linear rigid ligands such as simple 4, 4'-bipyridine analogues. A number of metal complexes derived from di-4-pyridyl sulfide have been reported previously, such as the silver(I) complexes (Jung *et al.*, 1999), copper(II) complexes (Muthu *et al.*, 2005), nickel(II) complex (Kondo *et al.*, 2004), as well as the cobalt(II) complex that showing 2-fold interpenetrating structures (Jung *et al.*, 1998).

As shown in Fig. 1, the local geometry of the cobalt atoms is a distorted octahedral arrangement with two chlorine atoms in trans positions and four pyridine units in a propeller arrangement (Tab. 1). Each di-4-pyridyl sulfide ligand connects two cobalt(II) ions defining the edges of a 40-membered $[Co(II)]_4$ sheet (Fig. 2). The bent angle of the sulfur atom [C-S-C = 102.90 (10) °]. The Co-Co separation through a di-4-pyridyl sulfide ligand is 11.2646 (10) Å, and through the diagonal of the rhombus is 15.355 (2) Å. There are six intramolecular C—H···N and C—H···Cl hydrogen bonding contacts around the coordination sphere of the cobalt atom (Tab. 2). The packing of the layered structure is shown in Fig.3.

Experimental

To a stirred solution of di-4-pyridyl sulfide (0.5 mmol) in ethanol-H₂O 20 ml (v/v, 1:1) was added solid CoCl₂(0.5 mmol). Then the obtained mixture was basified with NaOH (0.5 mol/l) to a pH of 6.0 and stirred at 343K for 4h, filtrated. One week later, red crystals appeared.

Refinement

The H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å (CH) and Uiso~(H) = 1.2Ueq(C).

Figures

Fig. 1. A view of the local coordination of the Co(II) cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) (-*x*, 1 - *y*, 1 - *z*); (B) (-1 + x, 3/2 - y, -1/2 + z); (C) (1 - x, -1/2 + y, 3/2 - z).

Fig. 2. A view of the two-dimensional network.

Fig. 3. A view of the compound packing down the *a* axis.

Poly[dichloridobis(μ_2 -di-4-pyridyl sulfide- $\kappa^2 N$,N')cobalt(II)]

Crystal	data
---------	------

$[CoCl_2(C_{10}H_8N_2S_1)_2]$	$F_{000} = 514$
$M_r = 506.32$	$D_{\rm x} = 1.571 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2498 reflections
a = 7.4940 (11) Å	$\theta = 2.6 - 29.0^{\circ}$
<i>b</i> = 15.355 (2) Å	$\mu = 1.26 \text{ mm}^{-1}$
c = 9.4009 (14) Å	T = 296 K
$\beta = 98.413 \ (2)^{\circ}$	Block, red
$V = 1070.1 (3) \text{ Å}^3$	$0.44 \times 0.34 \times 0.24 \text{ mm}$
7 = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	1969 independent reflections
Radiation source: fine-focus sealed tube	1720 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 296 K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -9 \rightarrow 8$
$T_{\min} = 0.608, \ T_{\max} = 0.747$	$k = -14 \rightarrow 18$
5174 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.070$	$w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 0.5314P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1969 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
133 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.0000	0.5000	0.5000	0.02605 (13)
Cl1	0.20061 (7)	0.43179 (4)	0.35327 (6)	0.04042 (16)
S1	0.46119 (10)	0.86590 (4)	0.38777 (6)	0.0496 (2)
N1	0.1375 (2)	0.62685 (11)	0.48432 (19)	0.0336 (4)
N2	0.8140 (2)	0.95816 (11)	0.79735 (18)	0.0295 (4)
C1	0.3135 (3)	0.63405 (14)	0.5315 (2)	0.0319 (5)
H1	0.3717	0.5866	0.5793	0.038*
C2	0.4148 (3)	0.70682 (14)	0.5143 (2)	0.0335 (5)
H2	0.5363	0.7088	0.5527	0.040*
C3	0.3335 (3)	0.77696 (14)	0.4393 (2)	0.0336 (5)
C4	0.1498 (3)	0.77243 (16)	0.3907 (3)	0.0485 (6)
H4	0.0894	0.8187	0.3410	0.058*
C5	0.0589 (3)	0.69710 (16)	0.4181 (3)	0.0492 (6)
H5	-0.0651	0.6952	0.3886	0.059*
C6	0.6455 (3)	0.92970 (14)	0.8003 (2)	0.0316 (5)
H6	0.6015	0.9310	0.8877	0.038*
C7	0.5337 (3)	0.89872 (14)	0.6820 (2)	0.0349 (5)
H7	0.4174	0.8803	0.6902	0.042*
C8	0.5962 (3)	0.89534 (14)	0.5507 (2)	0.0335 (5)
C9	0.7705 (3)	0.92370 (16)	0.5454 (2)	0.0433 (6)
Н9	0.8182	0.9221	0.4595	0.052*
C10	0.8725 (3)	0.95443 (16)	0.6695 (2)	0.0411 (6)
H10	0.9889	0.9737	0.6640	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)
Atomic displacement parameters (A)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0256 (2)	0.0273 (2)	0.0247 (2)	0.00031 (16)	0.00196 (15)	0.00041 (15)
Cl1	0.0376 (3)	0.0546 (4)	0.0284 (3)	0.0153 (3)	0.0027 (2)	-0.0004 (2)

supplementary materials

S1	0.0709 (4)	0.0438 (4)	0.0278 (3)	-0.0271 (3)	-0.0134 (3)	0.0079 (3)
N1	0.0322 (10)	0.0303 (10)	0.0371 (10)	-0.0001 (8)	0.0009 (8)	0.0009 (8)
N2	0.0310 (9)	0.0302 (10)	0.0261 (9)	-0.0020 (8)	0.0000 (7)	-0.0012 (7)
C1	0.0358 (12)	0.0290 (11)	0.0287 (11)	0.0006 (9)	-0.0023 (9)	0.0031 (9)
C2	0.0326 (11)	0.0336 (12)	0.0310 (11)	-0.0032 (9)	-0.0064 (9)	-0.0002 (9)
C3	0.0436 (13)	0.0287 (11)	0.0259 (10)	-0.0068 (9)	-0.0037 (9)	-0.0022 (9)
C4	0.0454 (14)	0.0302 (13)	0.0637 (17)	0.0008 (11)	-0.0125 (12)	0.0064 (12)
C5	0.0309 (12)	0.0374 (13)	0.0743 (18)	-0.0003 (10)	-0.0086 (12)	0.0023 (13)
C6	0.0339 (11)	0.0340 (11)	0.0265 (10)	-0.0025 (9)	0.0031 (9)	0.0002 (9)
C7	0.0345 (11)	0.0352 (12)	0.0333 (12)	-0.0093 (10)	-0.0004 (9)	0.0005 (10)
C8	0.0437 (13)	0.0265 (11)	0.0269 (11)	-0.0063 (9)	-0.0058 (9)	0.0022 (9)
C9	0.0495 (14)	0.0531 (15)	0.0280 (12)	-0.0121 (12)	0.0079 (10)	-0.0043 (11)
C10	0.0346 (12)	0.0550 (15)	0.0340 (12)	-0.0127 (11)	0.0061 (10)	-0.0060 (11)

Geometric parameters (Å, °)

Co1—N1 ⁱ	2.2184 (18)	C2—C3	1.379 (3)
Co1—N1	2.2185 (18)	С2—Н2	0.9300
Co1—N2 ⁱⁱ	2.2822 (17)	C3—C4	1.388 (3)
Co1—N2 ⁱⁱⁱ	2.2822 (17)	C4—C5	1.386 (3)
Co1—Cl1	2.4221 (5)	С4—Н4	0.9300
Co1—Cl1 ⁱ	2.4222 (5)	С5—Н5	0.9300
S1—C8	1.766 (2)	C6—C7	1.376 (3)
S1—C3	1.775 (2)	С6—Н6	0.9300
N1—C1	1.334 (3)	С7—С8	1.384 (3)
N1—C5	1.338 (3)	С7—Н7	0.9300
N2—C10	1.340 (3)	C8—C9	1.385 (3)
N2—C6	1.340 (3)	C9—C10	1.381 (3)
N2—Co1 ^{iv}	2.2822 (17)	С9—Н9	0.9300
C1—C2	1.373 (3)	C10—H10	0.9300
C1—H1	0.9300		
N1 ⁱ —Co1—N1	180.0	С1—С2—Н2	120.5
N1 ⁱ —Co1—N2 ⁱⁱ	94.00 (6)	С3—С2—Н2	120.5
N1—Co1—N2 ⁱⁱ	86.00 (6)	C2—C3—C4	118.2 (2)
N1 ⁱ —Co1—N2 ⁱⁱⁱ	86.00 (6)	C2—C3—S1	121.68 (17)
N1—Co1—N2 ⁱⁱⁱ	94.00 (6)	C4—C3—S1	119.80 (17)
N2 ⁱⁱ —Co1—N2 ⁱⁱⁱ	180.00 (8)	C5—C4—C3	118.1 (2)
N1 ⁱ —Co1—Cl1	89.50 (5)	C5—C4—H4	120.9
N1—Co1—Cl1	90.50 (5)	C3—C4—H4	120.9
N2 ⁱⁱ —Co1—Cl1	90.03 (4)	N1—C5—C4	124.4 (2)
N2 ⁱⁱⁱ —Co1—Cl1	89.97 (4)	N1—C5—H5	117.8
N1 ⁱ —Co1—Cl1 ⁱ	90.50(5)	С4—С5—Н5	117.8
	<i>J</i> 0.30 (3)	01 05 115	
N1—Co1—Cl1 ⁱ	89.50 (5)	N2—C6—C7	124.10 (19)
N1—Co1—Cl1 ⁱ N2 ⁱⁱ —Co1—Cl1 ⁱ	89.50 (5) 89.97 (4)	N2-C6-C7 N2-C6-H6	124.10 (19) 118.0

Cl1—Co1—Cl1 ⁱ	179.999 (1)	C6—C7—C8	119.2 (2)			
C8—S1—C3	102.90 (10)	С6—С7—Н7	120.4			
C1—N1—C5	115.77 (19)	С8—С7—Н7	120.4			
C1—N1—Co1	119.81 (14)	С7—С8—С9	117.7 (2)			
C5—N1—Co1	124.16 (15)	C7—C8—S1	123.87 (17)			
C10—N2—C6	115.96 (18)	C9—C8—S1	118.24 (16)			
C10—N2—Co1 ^{iv}	121.39 (14)	С10—С9—С8	119.1 (2)			
C6—N2—Co1 ^{iv}	122.47 (13)	С10—С9—Н9	120.5			
N1—C1—C2	124.4 (2)	С8—С9—Н9	120.5			
N1—C1—H1	117.8	N2—C10—C9	124.0 (2)			
C2—C1—H1	117.8	N2-C10-H10	118.0			
C1—C2—C3	119.0 (2)	С9—С10—Н10	118.0			
N2 ⁱⁱ —Co1—N1—C1	-149.12 (16)	S1—C3—C4—C5	172.1 (2)			
N2 ⁱⁱⁱ —Co1—N1—C1	30.88 (16)	C1—N1—C5—C4	3.4 (4)			
Cl1—Co1—N1—C1	-59.12 (16)	Co1—N1—C5—C4	-170.7 (2)			
Cl1 ⁱ —Co1—N1—C1	120.88 (16)	C3—C4—C5—N1	-2.4 (4)			
N2 ⁱⁱ —Co1—N1—C5	24.8 (2)	C10—N2—C6—C7	-0.6 (3)			
N2 ⁱⁱⁱ —Co1—N1—C5	-155.2 (2)	Co1 ^{iv} —N2—C6—C7	-175.65 (16)			
Cl1—Co1—N1—C5	114.8 (2)	N2—C6—C7—C8	0.6 (3)			
Cl1 ⁱ —Co1—N1—C5	-65.2 (2)	C6—C7—C8—C9	0.0 (3)			
C5—N1—C1—C2	-1.0 (3)	C6—C7—C8—S1	-174.41 (17)			
Co1—N1—C1—C2	173.43 (16)	C3—S1—C8—C7	-41.6 (2)			
N1—C1—C2—C3	-2.4 (3)	C3—S1—C8—C9	144.02 (19)			
C1—C2—C3—C4	3.3 (3)	C7—C8—C9—C10	-0.6 (4)			
C1—C2—C3—S1	-169.79 (17)	S1—C8—C9—C10	174.20 (19)			
C8—S1—C3—C2	-51.6 (2)	C6—N2—C10—C9	0.0 (4)			
C8—S1—C3—C4	135.4 (2)	Co1 ^{iv} —N2—C10—C9	175.13 (19)			
C2—C3—C4—C5	-1.0 (4)	C8—C9—C10—N2	0.6 (4)			
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $x-1$, $-y+3/2$, $z-1/2$; (iii) $-x+1$, $y-1/2$, $-z+3/2$; (iv) $-x+1$, $y+1/2$, $-z+3/2$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5····N2 ⁱⁱ	0.93	2.62	3.119 (3)	114
C6—H6…Cl1 ^{iv}	0.93	2.66	3.292 (2)	126
C10—H10···Cl1 ^v	0.93	2.64	3.292 (2)	128

Symmetry codes: (ii) x-1, -y+3/2, z-1/2; (iv) -x+1, y+1/2, -z+3/2; (v) x+1, -y+3/2, z+1/2.

Fig. 3

